REVIEW ARTICLE
Overview and Progress of GNSS Anti-multipath Antenna Designs
,
 
 
 
 
More details
Hide details
1
BeiJing Institute of Technology
 
2
University of Huddersfield
 
 
Submission date: 2023-08-29
 
 
Acceptance date: 2023-09-28
 
 
Publication date: 2023-09-30
 
 
Sensors and Machine Learning Applications 2023;2(3)
 
KEYWORDS
TOPICS
ABSTRACT
This article provides a comprehensive review of recent applications of GNSS anti-multipath antenna. Emphasis is placed on the role of anti-multipath antenna in GNSS. A brief summary of the current anti-multipath antenna in satellite-based navigation systems is provided and also the GNSS anti-multipath antenna plays a key role is emphasised, which will help in getting a better understanding of the requirements on the various performance parameters of a GNSS antenna. In addition, we review GNSS anti-multipath antenna design strategies and specific design examples that highlight the application of various types of GNSS anti-multipath antenna. Ultimately, this articles seeks to demonstrate the value of GNSS anti-multipath antenna design insights for antenna engineering and look toward promising new research directions for GNSS antenna research.
REFERENCES (71)
1.
B. Rama Rao, W. Kunysz, R. Fante, K. McDonald, 2013. GPS/GNSS Antennas (pp.1-91), Artech House.
 
2.
E.D.Kaplan, and Hegarty C.J., 2006, Understanding GPS (pp.1-91), Second Edition, ARTECH HOUSE Inc, Norwood, MA.
 
3.
Chris.Rizos,2010;GPS,GNSS and the Future, Manual of Geospatial Science and Technology (pp.259 281),Editor:J.D.Bossier;Second Edition;CRC Press;Boca Raton.
 
4.
Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, Elmar Wasle, 2008, GNSS— Global Navigation Satellite Systems; GPS, GLONASS, Galileo and More (pp.309-430), Springer Verlag Wien.
 
5.
Mohinder S.Grewal,Angus P.Andrews, Chris G.Bartone, Global Navigation Satellite Systems, Inertial Navigation, and Integration (pp.266), Wiley. Boston | London.
 
6.
Peter J.G.Teunissen,Oliver Montenbruck,2017.Handbook of Global Navigation Satellite Systems (pp.515). Springer. Boston | London.
 
7.
Hein, G, W., J. A. Avila-Rodriguez, S. Wallner, B. Eisfeller, P. Thomas, P. Hard; 2007. Envisioning a Future GNSS System of Systems, Inside GNSS, Part 1, pp. 58-67.
 
8.
J.M.Tranquilla, J.P.Carr, and H.M.Al-Rizzo,1994. Analysis of a choke ring ground plane for multipath control in global positioning system (GPS) applications, IEEE Transactions on Antenna and Propagation, vol. 42, no. 7, pp.905–911.
 
9.
W. E. McKinzie, R. B. Hurtado, B. K. Klimczak and J. D. Dutton, 2002.Mitigation of multipath through the use of an artificial magnetic conductor for precision GPS surveying antennas, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, pp. 640-643 vol.4.
 
10.
C.C.Tchapwou and T.Bertuch, 2007. Investigation of EBG surface performance for high-precision GPS applications, Electronic Letters, vol.43, no.24, pp.1327–1329.
 
11.
Mohamed K. Emara, Julien Hautcoeur, Gyles Panther, Jim S. Wight, and Shulabh Gupta,2019, Surface Impedance Engineered Low-Profile Dual-Band GroovedDielectric Choke Ring for GNSS Applications. IEEE Transactions on Antenna and Propagation, vol.67, no.3, pp. 2008-2011.
 
12.
Y. Lee, S. Ganguly, and R. Mittra, Multi-band L5-capable GPS antenna with reduced backlobes, 2005, in Proc. IEEE Antennas and Propagation Society Symp., Washington, DC,Jul.3-8,2005,vol.1A,pp.438-441.
 
13.
Rens Baggen, Marta Martínez-Vázquez, Jens Leiss, Sybille Holzwarth, Luca Salghetti Drioli, and Peter de Maagt, 2008. Low Profile GALILEO Antenna Using EBG Technology. IEEE Transcations on Antenna and Propagation, vol.56, no.3, pp. 667- 674.
 
14.
UNAVCO(2012),Choke+ring+antenna+calibrations.
 
15.
M. Maqsood, S. Gao, T. Brown, and M. Unwin, 2010. Effects of ground plane on the performance of multipath mitigating antennas for GNSS, in 2010 Loughborough Antennas & Propagation Conference, Loughborough, UK, pp. 241–244.
 
16.
Filippov.V., Tatarnicov, D., Ashjaee,J. et al.(1998). The first dual-depth dual-frequency choke ring. In: Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998), 1035-1040.TN: Nashville.
 
17.
F.Khosravi, H.Moghadas, and P.Mousavi, 2015. A GNSS Antenna With a Polarization Selective Surface for the Mitigation of Low-Angle Multipath Interference, IEEE Transcations on Antenna and Propagation, vol. 63,no. 12, pp. 5287–5295.
 
18.
Javad,2012. Choke ring theory.
 
19.
Thornberg, D.B., Thornberg, D.S.,DiBenedetto, M.F.et al.,2003.LAAS integrated multipath-limiting antenna. ION Navigation Journal 50 (2):117-130.
 
20.
Kunysz, W. ,2003. A three dimensional choke ring ground plane antenna. In: ION GPS/GNSS 2003, Portland, OR (9-12 September 2003), 1883-1888.
 
21.
Ehsan Taghdisi, Mohammad Saeid Ghaffarian, Rashid Mirzavand, 2022 March. LowProfile Substrate Integrated Choke Rings for GNSS Multipath Mitigation, in IEEE Transcations on Antenna and Propagation, vol.70, no.3, pp. 1706-1718.
 
22.
M. Maqsood, S. Gao, T. W. C. Brown, M. Unwin, R. de vos Van Steenwijk and J. D. Xu, 2013 May. A Compact Multipath Mitigating Ground Plane for Multiband GNSS Antennas, in IEEE Transactions on Antennas and Propagation, vol. 61, no. 5, pp. 2775-2782.
 
23.
L. Boccia, G. Amendola, G. Di Massa, and L. Giulicchi, 2001, Shorted annular patch antennas for multipath rejection in GPS based attitude determination systems, Microw. Opt. Tech. Lett., vol. 28, no. 1, Jan.
 
24.
M.Maqsood, S.Gao, T.Brown, J.Xu, and J.Li, 2012 Mar. Novel multipath mitigating ground planes for multiband global navigation satellite system antennas, in Proc. 6th Eur. Conf. antennas Propag. (EUCAP), pp. 1920–1924.
 
25.
B. W. Parkinson, J. J. Spilker, Jr., P. Axelrad, and P. Enge, 1996. Global positioning system: Theory and applications, Amer. Institute Astronautics Aeronautics, vol.1, pp. 547–566, 3rd ed., ch.14.
 
26.
C. C. III Counselman,1999 Jan. Multipath-rejecting GPS antennas, IEEE Proc. Special Issue GPS Global Positioning Syst., vol. 87, no.1, pp. 86–91.
 
27.
A. M. Dinius,1995.GPS Antenna Multipath Rejection Performance Massachusetts Institute of Technol., Lincoln Lab., Cambridge, MA, Rep.ATC-238, Aug., vol. 70.
 
28.
B. R. Rao, J. H. Williams, E. N. Rosario, and R. J. Davis, GPS microstrip antenna array on a resistivity tapered ground plane for multipath mitigation, [Online].
 
29.
T. Milligan and P. K. Kelly, 1996, Optimization of ground plane for improved GPS antenna performance, IEEE Antennas and Propagation Society International Symposium. 1996 Digest, Baltimore, MD, USA, pp. 1250-1253 vol.2.
 
30.
F.Scire-Scappuzzo and S.N.Makarov, 2009. A Low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane, IEEE Transcations on Antenna and Propagation, vol.57, no.1, pp.33-46.
 
31.
H. R. Khaleel, H. Al-Rizzo, A. Isaac and A. Bihnam, 2014,Multipath mitigation in high precision GPS systems using Artificial Magnetic Conductors, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, pp. 432-433. 32.
 
32.
C. C. Counselman,1999,Multipath-rejecting GPS antennas, in Proceedings of the IEEE, vol. 87, no. 1, pp. 86-91, Jan. 1999.
 
33.
Westfall,B.,1997.Antenna with R Card Ground Plane, U.S.Patent #5,694,136,USPTO.
 
34.
Lennen,G.,W.Hand, and B.Westfall,1996.GPS Recevier with N-point Symmetrical Feed Double Frequency Patch Antenna, U.S.Patent #5,515,957,USPTO.
 
35.
B. R. Rao, M. N. Solomon, M. D. Rhines, L. J. Teig, R. J. Davis and E. N. Rosario, Research on GPS antennas at Mitre, 1998, IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153), Palm Springs, CA, USA, pp. 634-641.
 
36.
Tatarnikov DV,Filippov VS,Soutiaguine IV,Astakhov AV,Stepanenko AP,Shamatulsky PP,2005.Multipath mitigation by conventional antennas with ground planes and passive vertical structures. GPS Solutions 9(3):194–201.
 
37.
Tatarnikov DV,2008. Ground planes for high precision GNSS antennas. Part 1. Conductive and impedance ground planes. Antennas 4(131):6–19 Moscow, Radiotechnika (in Russian).
 
38.
D.Tatarnikov, A.Stepanenko, A.Astakhov, V.Filippov, 2010. Compact circular polarized antenna with expanded frequency bandwidth, Patent RF No.2380799.
 
39.
D.Tatarnikov, A. Astakhov, A. Stepanenko, 2011. Broadband convex impedance ground planes for multisystem GNSS reference station antennas, GPS Solutions 15(2), 101–108.
 
40.
D. Tatarnikov, A. Astakhov and A. Stepanenko, 2011, Convex GNSS Reference station antenna, 2011 International Conference on Multimedia Technology, Hangzhou, China, pp. 6288-6291.
 
41.
Sievenpiper. D, 2006. Review of the Theory, Fabrication, and Application of High Impedance Ground Planes, in Metamaterials: Physics and Engineering Explorations, N.Engheta and R.K.Ziolkowski(eds.),Hoboken,NJ:John Wiley&Sons,pp.287-309.
 
42.
G. Goussetis, A. P. Feresidis and J. C. Vardaxoglou, 2006.Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate, in IEEE Transactions on Antennas and Propagation, vol. 54, no. 1, pp. 82-89.
 
43.
J.-M. Baracco, L. Salghetti-Drioli and P. de Maagt, 2008. AMC Low Profile Wideband Reference Antenna for GPS and GALILEO Systems, in IEEE Transactions on Antennas and Propagation, vol. 56, no. 8, pp. 2540-2547.
 
44.
N. Padros, J. I. Ortigosa, J. Baker, M. F. Iskander and B. Thornberg, 1997. Comparative study of high-performance GPS receiving antenna designs, in IEEE Transactions on Antennas and Propagation, vol. 45, no. 4, pp. 698-706.
 
45.
Zhang,Y.,M. Younis, and C. Fischer, et al.,2003.Planar Artificial Magnetic Conductors and Patch Antennas, IEEE Transcations on Antenna and Propagation, Vol. 51, No. 10, October pp. 2704–2712.
 
46.
A. P. Feresidis, G. Goussetis and J. C. Vardaxoglou, 2004. Metallodielectric arrays without vias as artificial magnetic conductors and electromagnetic band gap surfaces, IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, pp. 1159- 1162 vol.2.
 
47.
Roke,2012. Roke triple GNSS geodetic-grade antenna.
 
48.
Krantz, E., Riley, S., and Large,P.,2001.The design and performance of the zephyr geodetic antenna, in Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT(11- 14 September 2001),1942-1951.
 
49.
Granger,R. and Simpson,S.,2008. An analysis of multipath mitigation techniques suitable for geodetic antennas, in Proceedings of the 21st International Technical Meeting of the Satellite Divison of The Institute of Navigation (ION GNSS 2008), Savannah, GA (16-19 September 2008),2755-2765.
 
50.
Vexxis gnss-500 series antennas.
 
51.
Yang, N. and Freestone, J. (2016). High-performance GNSS antennas with phasereversal quadrature feeding network and parasitic circular array. In: Proceedings of the 29th International Technical Meeting of the Satellites Division of The Institute of Navigation (ION GNSS+2016), Portland, Oregon (September 2016), 364-372
 
52.
Gerein,N. and Freestone,J.(2019). NovAtel GNSS-800 Antenna Information files.
 
53.
Waldemar Kunysz, NovAtel Inc., 2000. High Performance GPS Pinwheel Antenna. ION, 210, pp.135-144.
 
54.
Waldemar Kunysz, NovAtel Inc., 2001. Advanced Pinwheel Compact Controlled Reception Pattern Antenna (AP-CRPA) designed for Interference and Multipath Mitigation. ION GNSS+ 2001.
 
55.
Novatel, GPS-704X Antenna Design and Performance [Online].
 
56.
Zeng-Pei Zhong, Xiao Zhang, 2021. A Travelling-Wave-Fed Slot Spiral Antenna With Wide Axial-Ratio Bandwidth and Beamwidth for GNSS Applications, IEEE Open Journal of Antenna and Propagation, vol. 2, pp. 578-584.
 
57.
Lorena I. Basilio, Richard L. Chen, Jeffery T. Williams, David R. Jackson, 2018. A New Planar Dual-Band Tunable AMC Structure for GNSS Antennas and Its Performance Trade-Offs. 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM).
 
58.
Mohamed K. Emara, Shulabh Gupta, Julien Hautcoeur, Gyles Panther, Jim S. Wight, 2007. A Low-Profile Dual-Band GPS Antenna Designed for Reduced Susceptibility to Low-Angle Multipath, IEEE Transactions on Antenna and Propagation, vol.55, no.8.
 
59.
L. I. Basilio, J. T. Williams, D. R. Jackson, and M. A. Khayat, 2005. A comparative study of a new GPS reduced-surface-wave antenna, IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 233–236.
 
60.
L.I. Basilio, 2003. New GPS Antennas Designed for Reduced Multipath Susceptibility, Ph.D. Dissertation, University of Houston, Houston, TX.
 
61.
H. Liu, S. Fang, and Z. Wang, 2013. A novel multimode reduced-surface-wave antenna for GNSS applications, IEEE Antennas and Wireless Propagation Letters, vol.12, pp.1618–1621.
 
62.
Jia Wei, Shaowei Liao, Quan Xue, 2022. High Integrated Multifunctional Antenna for Global Navigation Satellite System. IEEE Transcations on Antenna and Propagation, vol.70, No.12.
 
63.
H. Liu, J. Wang, Z. Zhao, Z. Wang and S. Fang, 2023.Design of Wideband GNSS Antenna With Wide-Angle Circular Polarization and Anti-Multipath Performance for High Precision Marine Positioning, in IEEE Transactions on Vehicular Technology, vol. 72, no. 5, pp. 6281-6293.
 
64.
Y. Liu, Z. Ai, G. Liu and Y. Jia, 2019. An Integrated Shark-Fin Antenna for MIMO-LTE, FM, and GPS Applications, in IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 8, pp. 1666-1670.
 
65.
O. -Y. Kwon, R. Song and B. -S. Kim, 2018. A Fully Integrated Shark-Fin Antenna for MIMO-LTE, GPS, WLAN, and WAVE Applications, in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 4, pp. 600-603.
 
66.
Q. Wu, Y. Zhou and S. Guo, 2018. An L-Sleeve L-Monopole Antenna Fitting a SharkFin Module for Vehicular LTE, WLAN, and Car-to-Car Communications, in IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7170-7180.
 
67.
I. Goncharova and S. Lindenmeier, 2015. A high efficient automotive roof-antenna concept for LTE, DAB-L, GNSS and SDARS with low mutual coupling, 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 2015, pp. 1-5.
 
68.
E. Ghafari et al., 2014. A vehicular roof top, shark-fin, multiband antenna for the GPS/LTE/cellular/DSRC systems, in Proc. IEEE APS Top. Conf. Antennas Propag. Wireless Commun. (APWC), pp. 237–240.
 
69.
D. Huang, Z. Du, and Y. Wang, 2019. A quad-antenna system for 4G/5G/GPS metal frame mobile phones, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 8, pp. 1586–1590.
 
70.
A. Abdalrazik, A. Gomaa, and A. Ahmed Kishk, 2021. A hexaband quadcircularpolarization slotted patch antenna for 5G, GPS, WLAN, LTE, and radio navigation applications, IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 8, pp. 1438–1442.
 
71.
H. S. Singh and M. Agarwal, 2014. A quad-band compact diversity antenna for GPS L1/Wi-Fi/LTE2500/WiMAX /HIPERLAN1 applications, IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 249–252.
 
eISSN:2753-4154
Journals System - logo
Scroll to top